Virulency of Bacillus subtilis and Trichoderma harzianum Against Sprout Disease Pythium spp. in Cucumber Plants

Authors

  • Minal Maimanah Department of Plant Pests and Diseases, Faculty of Agriculture, University of Brawijaya
  • Restu Rizkyta Kusuma Department of Plant Pests and Diseases, Faculty of Agriculture, University of Brawijaya
  • Luqman Qurata Aini Department of Plant Pests and Diseases, Faculty of Agriculture, University of Brawijaya

DOI:

https://doi.org/10.21776/ub.jtpp.2021.002.2.1

Keywords:

damping-off disease, biological control, seed disease, antagonist fungi

Abstract

Sprout disease (damping off) is one of the important diseases that attack a variety of horticultural plants. Besides, sprouts disease can also attack seeds that have not germinated (preemergence damping-off). This study aimed to determine and compare the ability of B. subtilis and T. harzianum in controlling the pathogen Pythium spp. in cucumber plants. Phy01CK and Phy01IP isolates were use in the virulency test and inoculation methods of pathogens. The inhibition test between B. subtilis and T. harzianum against Pythium spp. was conducted in the in vitro test. This research was used a randomized block design with 13 treatments and three replications. The results of the antagonist's effect in vitro between T. harzianum and Pythium spp. showed the highest suppressing growth of Pythium spp. which is 70%. B. subtilis, B. subtilis + T. harzianum and fungicides each having a zone of inhibition of 23%, 32% and 46%. In the in vivo tests, the application of biological agents with 3 different times was not affecting the incidence of damping-off disease at 10 days after planting.

References

Agrios, G. 2005. Plant Pathology. Fift. Elsevier Inc.

Al-Sheikh, H. 2010. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field. Saudi J. Biol. Sci. 17(4): 347–352. doi: 10.1016/j.sjbs.2010.05.001.

Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J. and Montesinos, E. 2012. Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees 26(1): 215–226. doi: 10.1007/s00468-011-0626-y.

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., and Bragard, C. 2019. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 10: 302. doi: 10.3389/fmicb.2019.00302.

Dharmaputra, O. S., Gunawan, A., Wulandari R., and Basuki, T. 1999. Dominant Fungi Contaminating the Beds of Rice Straw Mushroom and Their Interaction with Straw Mushroom in vitro. J. Mikrobiotogi Indones. Februari (February 1999).

Elshahawy, I., Abouelnasr H., Lashin, S. M., and Darwesh, O. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. J. Plant Prot. Res. 58: 137–151. doi: 10.24425/122929.

Fadiji, A. E., and Babalola, O. O. 2020. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Front. Bioeng. Biotechnol. 8: 467. doi: 10.3389/fbioe.2020.00467.

Kilany, M., Ibrahim, E., Alamri, S., Roman, S., and Siddiqi, S. 2015. Microbial Suppressiveness of Pythium Damping-Off Diseases. p. 187–206.

Lemes, F., Bacci, L., Maria, and Fernandes, S. 2010. Impact and Selectivity of Insecticides to Predators and Parasitoids. EntomoBrasilis 3. doi: 10.12741/ebrasilis.v3i1.52.

Marcello, C., Steindorff, A., Silva, R., Bataus, L., and Ulhoa, C. 2008. Expression analysis of the exo-beta-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol. Res. 165: 75–81. doi: 10.1016/j.micres.2008.08.002.

Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., and Olivares, J. G. G. 2015. Antibiosis of Trichoderma spp. strains native to Northeastern Mexico against the pathogenic fungus macrophomina phaseolina. Brazilian J. Microbiol. 46(4): 1093–1101. doi: 10.1590/S1517-838246420120177.

Purwantisari, S., and Priyatmojo, A. 2015. Aplikasi Jamur Antagonis Trichoderma viride Terhadap Pengurangan Intensitas Serangan Penyakit Hawar Daun Serta Hasil Tanaman Kentang. Sumber Daya Alam. 2015: 210–215.

Raftoyannis, Y., and Dick, M. 2002. Effects of inoculum density, plant age and temperature on disease severity caused by Pythiaceous fungi on several plants. Phytoparasitica 30: 67–76. doi: 10.1007/BF02983972.

Schmidt, H., and Hensel, M. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17(1): 14–56. doi: 10.1128/cmr.17.1.14-56.2004.

Sedki, R., and El-mohamedy, R. 2012. Biological control of Pythium root rot of Broccoli plants under greenhouse condition. J. Agric. Technol. 8.

Soekarno, B., Surono, and Hendra. 2013. Optimalisasi peran kompos bioaktif dengan penambahan asam humat dan asam fulvat untuk meningkatkan ketahanan tanaman mentimun terhadap serangan Pythium sp. Bionatura-Jurnal Ilmu-ilmu Hayati dan Fis. 15(1): 35–43.

Velásquez, A.C., Castroverde, C. D. M., and He, S. Y. 2018. Plant-Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 28(10): R619–R634. doi: 10.1016/j.cub.2018.03.054.

Downloads

Published

2021-06-24

How to Cite

Maimanah, M., Kusuma, R. R., & Aini, L. Q. (2021). Virulency of Bacillus subtilis and Trichoderma harzianum Against Sprout Disease Pythium spp. in Cucumber Plants. Journal of Tropical Plant Protection, 2(2), 33–40. https://doi.org/10.21776/ub.jtpp.2021.002.2.1

Issue

Section

Articles